Russian Academy of Sciences

Landau Institute for Theoretical Physics

Vladimir V. Sokolov

Leading researcher

Doctor of science

Professor

Email:

Publications

    1. V. Sokolov, T. Wolf, Non-abelizations of quadratic ODE-systems, arXiv:1807.05583.
    2. V. Sokolov, T. Wolf, Integrable non-abelization of the flow on an elliptic curve, arXiv:1809.03030.
    3. A.G. Meshkov, V.V. Sokolov, On third order integrable vector Hamiltonian equations, J. Geom. Phys., 113, 206-214 (2017), WoS: 000394078200017, Scopus: 2-s2.0-85008599127.
    4. V.V. Sokolov, A.S. Sorin, Integrable cosmological potentials, Lett. Math. Phys., 107(9), 1741-1768 (2017); arXiv:1608.08511, WoS: 000408007900007, Scopus: 2-s2.0-85019048669.
    5. M.G. Matushko, V.V. Sokolov, Polinomial’nye formy dlya kvantovykh ellipticheskikh gamil’tonianov Kalodzhero–Mozera, TMF, 191(1), 14-24 (2017) [M.G. Matushko, V.V. Sokolov, Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians, Theor. Math. Phys., 191(1), 480-490 (2017)], WoS: 000400773000002, Scopus: 2-s2.0-85018786052.
    6. V.V. Sokolov, A.B. Shabat, O ratsional’nykh resheniyakh uravneniya Rikkati, UMN, 71:4(430), 189-190 (2016) [V.V. Sokolov, A.B. Shabat, Rational solutions of a Riccati equation, Russ. Math. Surveys, 71(4), 787–789 (2016)], Scopus: 2-s2.0-84997173251.
    7. V.V. Sokolov, A.V. Turbiner, Quasi-exact-solvability of the A2/G2 Elliptic model: algebraic form, sl(3)/g(2) hidden algebra, polynomial eigenfunctions, J. Phys. A: Math. Theor. 48, 155201 (2015); arXiv:1409.7439, WoS: 000352113800002, Scopus: 2-s2.0-84925811124.
    8. A.M. Kamchatnov, V.V. Sokolov, Nonlinear waves in two-component Bose-Einstein condensates: Manakov system and Kowalevski equations, Phys. Rev. A 91, 043621 (2015); arXiv:1501.01229, WoS: 000352845900006, Scopus: 2-s2.0-84929497573.
    9. A.G. Meshkov, V.V. Sokolov, Integrable Hamiltonian equations of fifth order with the Hamiltonian operator Dx, Russ. J. Math. Phys., 22(2), 201-214 (2015); arXiv:1406.5916, WoS: 000357595000007.
    10. V.V. Sokolov, Algebraicheskie kvantovye gamil’toniany na ploskosti, TMF, 184(1), 57-70 (2015) [V.V. Sokolov, Algebraic quantum Hamiltonians on the plane, Theor. Math. Phys., 184(1), 940-952 (2015)]; arXiv:1503.05185, WoS: 000360193700003, Scopus: 2-s2.0-84940201846.
    11. A. Odesskii, V. Rubtsov, V. Sokolov, Parameter-dependent associative Yang-Baxter equations and Poisson brackets, Int. J. Geom. Methods Mod. Phys. 11(9), 1460036 (2014) [18 pages]; arXiv:1311.4321, WoS: 000344230400013, Scopus: 2-s2.0-84908628170.
    12. A.G. Meshkov, V.V. Sokolov, Integrable evolution Hamiltonian equations of the third order with the Hamiltonian operator Dx, J. Geom. Phys., 85, 245-251 (2014); arXiv:1401.6844, WoS: 000342540500021, Scopus: 2-s2.0-84900943349.
    13. A. Meshkov, V. Sokolov, Vector hyperbolic equations on quadrics possessing integrable third-order symmetries, Lett. Math. Phys., 104(3), 341-360 (2014); arXiv:1211.0681, WoS: 000331644500005, Scopus: 2-s2.0-84893951279.
    14. A.V. Odesskii, V.V. Sokolov, Non-homogeneous systems of hydrodynamic type possessing Lax representations, Commun. Math. Phys., 324(1), 47-62 (2013); arXiv:1206.5230, WoS: 000325626900002, Scopus: 2-s2.0-84885579087.
    15. V.V. Sokolov, Klassifikatsiya postoyannykh reshenii assotsiativnogo uravneniya Yanga–Bakstera na algebre Mat3, TMF, 176(3), 385–392 (2013) [V.V. Sokolov, Classification of constant solutions of the associative Yang-Baxter equation on Mat3, Theor. Math. Phys., 176(3), 1156-1162 (2013)]; arXiv:1212.6421, WoS: 000325707900004, Scopus: 2-s2.0-84885574569.
    16. A. Odesskii, V. Rubtsov, V. Sokolov, Double Poisson brackets on free associative algebras, Contemp. Math., 592, 225-239 (2013) [Noncommutative Birational Geometry, Representations and Combinatorics, Ed. by A. and V. Retakh, AMS, 2013. ISBNs: 978-0-8218-8980-0 (print); 978-1-4704-0971-5 (online)]; arXiv:1208.2935, WoS: 000320089500010.
    17. A.V. Odesskii, V.N. Rubtsov, V.V. Sokolov, Bigamil’tonovy ODU s matrichnymi peremennymi, TMF, 171(1), 26-32 (2012) [A. Odesskii, V. Rubtsov, V. Sokolov, Bi-Hamiltonian ordinary differential equations with matrix variables, Theor. Math. Phys., 171(1), 442–447 (2012)]; arXiv:1105.1740, WoS: 000303876200003, Scopus: 2-s2.0-84860628977.
    18. A.G. Meshkov, V.V. Sokolov, Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi, Ufimsk. matem. zhurn., 4(3), 104-154 (2012); arXiv:1302.6010.
    19. M. Dunajski, V. Sokolov, On the 7th order ODE with submaximal symmetry, J. Geom. Phys., 61(8), 1258-1262 (2011); arXiv:1002.1620, WoS: 000291901200002, Scopus: 2-s2.0-79952722963.
    20. A.G. Meshkov, V.V. Sokolov, Giperbolicheskie uravneniya s simmetriyami tret’ego poryadka, TMF, 166(1), 51-67 (2011) [A.G. Meshkov, V.V. Sokolov, Hyperbolic equations with third-order symmetries, Theor. Math. Phys., 166(1), 43-57 (2011)], WoS: 000287245500004, Scopus: 2-s2.0-79951482832.
    21. A. Odesskii, V. Sokolov, Classification of integrable hydrodynamic chains, J. Phys. A: Math. Theor. 43, 434027, 15 p. (2010); arXiv:1001.0020, Scopus: 2-s2.0-78649662354.
    22. V.G. Marikhin, V.V. Sokolov, Transformation of a pair of commuting Hamiltonians quadratic in momenta to a canonical form and on a partial real separation of variables for the Clebsch top, Regul. Chaotic Dyn., 15 (6), 652-658 (2010), Scopus: 2-s2.0-78650414402.
    23. A. Odesskii, V. Sokolov, Integrable pseudopotentials related to generalized hypergeometric functions, Sel. Math. New Ser., 16(1), 145-172 (2010); arXiv:0803.0086, Scopus: 2-s2.0-77950020760.
    24. A.V. Odesskii, V.V. Sokolov, Integriruemye (2+1)-mernye sistemy gidrodinamicheskogo tipa, TMF, 163(2), 179–221 (2010) [A.V. Odesskii, V.V. Sokolov, Integrable (2+1)-dimensional systems of hydrodynamic type, Theor. Math. Phys., 163(2), 549-586 (2010)]; arXiv:1009.2778, Scopus: 2-s2.0-77953508429.
    25. V.G. Marikhin, V.V. Sokolov, O nekotorykh integral’nykh uravneniyakh, svyazannykh so sluchainymi gaussovskimi protsessami, TMF, 164(2), 196–206 (2010) [V.G. Marikhin, V.V. Sokolov, Some integral equations related to random Gaussian processes, Theor. Math. Phys., 164(2), 992–1001 (2010)], Scopus: 2-s2.0-77956439368.
    26. E.V. Ferapontov, A. Moro, V.V. Sokolov, Hamiltonian systems of hydrodynamic type in 2+1 dimensions, Commun. Math. Phys., 285(1), 31-65 (2009); arXiv:0710.2012.
    27. A.V. Odesskii, V.V. Sokolov, Integriruemye ellipticheskie psevdopotentsialy, TMF, 161(1), 21–36 (2009) [A.V. Odesskii, V.V. Sokolov, Integrable elliptic pseudopotentials, Theor. Math. Phys., 161(1), 1340–1352 (2009)]; arXiv:0810.3879.
    28. A.V. Mikhailov, V.V. Sokolov, Symmetries of Differential Equations and the Problem of Integrability, Lect. Notes Phys., 767, 19-88 (2009) [Integrability, ed A.V. Mikhailov, Springer, xiii, 339 pp., ISBN 978-3-540-88110-0].
    29. A.V. Odesskii, V.V. Sokolov, Systems of Gibbons-Tsarev type and integrable 3-dimensional models, arXiv:0906.3509.
    30. A.G. Meshkov, V.V. Sokolov, Integrable hyperbolic equations of sin-Gordon type, arXiv:0912.5092.
    31. A. Odesskii, V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, Commun. Math. Phys., 278 (1), 83-99 (2008); math/0611200.
    32. D.K. Demskoi, V.V. Sokolov, On recursion operators for elliptic models, Nonlinearity, 21 (6), 1253-1264 (2008); nlin/0607071.
    33. V.G. Marikhin, V.V. Sokolov, O privedenii pary kvadratichnykh po impul’sam gamil’tonianov k kanonicheskoi forme i o veshchestvennom chastichnom razdelenii peremennykh dlya volchka Klebsha, Nelineinaya dinamika, 4(3), 313-322 (2008).
    34. A.V. Odesskii, M.V. Pavlov, V.V. Sokolov, Klassifikatsiya integriruemykh uravnenii tipa uravneniya Vlasova, TMF, 154(2), 249-260 (2008) [A.V. Odesskii, M.V. Pavlov, V.V. Sokolov, Classification of integrable Vlasov-type equations, Theor. Math. Phys, 154(2), 209–219 (2008)]; arXiv:0710.5655.
    35. V.V. Sokolov, S.Ya. Startsev, Simmetrii nelineinykh giperbolicheskikh sistem tipa tsepochek Tody, TMF, 155(2), 344-355 (2008) [V.V. Sokolov, S.Y. Startsev, Symmetries of nonlinear hyperbolic systems of the Toda chain type, Theor. Math. Phys., 155(2), 802-811 (2008)].
    36. A.V. Odesskii, V.V. Sokolov, O (2+1)-mernykh sistemakh gidrodinamicheskogo tipa, obladayushchikh psevdopotentsialom s podvizhnymi osobennostyami, Funkts. analiz i ego pril., 42(3), 53-62 (2008) [A.V. Odesskii, V.V. Sokolov, On (2+1)-dimensional hydrodynamic type systems possessing a pseudopotential with movable singularities, Func. Anal. and Its Appl, 42(3), 205-212 (2008)]; math-ph/0702026.
    37. A. Odesskii, V. Sokolov, Integrable pseudopotentials related to elliptic curves, arXiv:0810.3879.
    38. V.G. Marikhin, V.V. Sokolov, Pairs of Hamiltonians, quadratic in momenta, arXiv:0710.4035.
    39. A.B. Shabat, V.E. Adler, V.G. Marikhin, V.V. Sokolov (eds.), Encyclopedia of Integrable Systems, L.D. Landau Institute for Theoretical Physics - Research Institute for Symbolic Computations, J. Kepler Universität (2007) [on-line].
    40. A. Odesskii, V. Sokolov, Algebraic structures connected with pairs of compatible associative algebras, Int. Math. Res. Notices, 2006, 43734 (2006); math/0512499.
    41. A.V. Odesskii, V.V. Sokolov, Compatible Lie brackets related to elliptic curve, J. Math. Phys., 47, 013506 (2006); math/0506503.
    42. V.V. Sokolov, T. Wolf, Integrable quadratic classical Hamiltonians on so(4) and so(3,1), J. Phys. A 39 (8), 1915-1926 (2006); nlin/0405066.
    43. A.V. Odesskii, V.V. Sokolov, Integrable matrix equations related to pairs of compatible associative algebras, J. Phys. A 39(40), 12447-12456 (2006); math/0604574.
    44. I.Z. Golubchik, V.V. Sokolov, Soglasovannye skobki Li i uravnenie Yanga-Bakstera, TMF, 146 (2), 195-207 (2006) [I.Z. Golubchik, V.V. Sokolov, Compatible Lie brackets and the Yang-Baxter equation, Theor. Math. Phys., 146 (2), 159-169 (2006)].
    45. V.G. Marikhin, V.V. Sokolov, Pary kommutiruyushchikh gamil’tonianov, kvadratichnykh po impul’sam, TMF, 149(2), 147-160 (2006) [V.G. Marikhin, V.V. Sokolov, Pairs of commuting Hamiltonians quadratic in the momenta, Theor. Math. Phys., 149(2), 1425-1436 (2006)].
    46. I.Z. Golubchik, V.V. Sokolov, Factorization of the current algebra and integrable top-like systems, J. Nonlinear Math. Phys., 12, Suppl.1, 343-350 (2005).
    47. V.G. Marikhin, V.V. Sokolov, Separation of variables on a non-hyperelliptic curve, Regul. Chaotic Dyn., 10(1), 59-70 (2005); nlin/0412065.
    48. V.G. Marikhin. V.V. Sokolov, Razdelenie peremennykh na negiperellipticheskoi krivoi, Nelineinaya dinamika, 1(1), 53-67 (2005).
    49. V.G. Marikhin, V.V. Sokolov, O kvazishtekkelevykh gamil’tonianakh, Uspekhi mat. nauk, 60:5(365), 175-176 (2005) [V.G. Marikhin, V.V. Sokolov, On quasi-Stäckel Hamiltonians, Russ. Math. Surv., 60(5), 981-983 (2005)].
    50. V.V. Sokolov, Ob odnom klasse kvadratichnykh gamil’tonianov na so(4), Dokl. Akad. nauk, 394 (5), 602-605 (2004) [V.V. Sokolov, One class of quadratic so(4) Hamiltonians, Dokl. Math., 69 (1), 108-111 (2004)].
    51. V.V. Sokolov, O razlozheniyakh algebry petel’ nad so(3) v pryamuyu summu dvukh podalgebr, Dokl. Akad. nauk, 397 (3), 321-324 (2004) [V.V. Sokolov, On decompositions of the loop algebra over so(3) into a sum of two subalgebras, Dokl. Math., 70 (1), 568-570 (2004)].
    52. A.G. Meshkov, V.V. Sokolov, Klassifikatsiya integriruemykh divergentnykh N-komponentnykh evolyutsionnykh sistem, TMF, 139(2), 192–208 (2004) [A.G. Meshkov, V.V. Sokolov, Classification of integrable divergent N-component evolution systems, Theor. Math. Phys., 139(2), 609-622 (2004)].
    53. I.Z. Golubchik, V.V. Sokolov, Faktorizatsiya algebry petel’ i integriruemye sistemy tipa volchkov, TMF, 141(1), 3-23 (2004) [I.Z. Golubchik, V.V. Sokolov, Factorization of the loop algebra and integrable toplike systems, Theor. Math. Phys., 141 (1), 1329-1347 (2004)]; nlin/0403023.
    54. O.V. Efimovskaya, V.V. Sokolov, Razlozheniya algebry petel’ nad so(4) i integriruemye modeli tipa uravneniya kiral’nogo polya, Fundament. i prikl. matem., 10(1), 39-47 (2004) [O.V. Efimovskaya, V.V. Sokolov, Decompositions of the loop algebra over so(4) and integrable models of the chiral equation type, J. Math. Sci., 136(6), 4385–4391 (2006)].
    55. I.V. Komarov, V.V. Sokolov, A.V. Tsiganov, Poisson maps and integrable deformations of the Kowalevski top, J. Phys. A 36(29), 8035-8048 (2003); nlin/0304033.
    56. R.H. Heredero, A. Shabat, V. Sokolov, A new class of linearizable equations, J. Phys. A 36(47), L605-L614 (2003); nlin/0301001.
    57. A.G. Meshkov, V.V. Sokolov, Integrable evolution equations on the N-dimensional sphere, Commun. Math. Phys., 232 (1), 1-18 (2002).
    58. V.V. Sokolov, A.V. Tsyganov, Pary Laksa dlya deformirovanykh volchkov Kovalevskoi i Goryacheva-Chaplygina, TMF, 131(1), 118-125 (2002) [V.V. Sokolov, A.V. Tsiganov, Lax pairs for the deformed Kowalevski and Goryachev-Chaplygin tops, Theor. Math. Phys., 131(1), 543-549 (2002)]; nlin/0111035.
    59. V.V. Sokolov, A.V. Tsyganov, Kommutativnye puassonovy podalgebry dlya skobok Sklyanina i deformatsii izvestnykh integriruemykh modelei, TMF, 133(3), 485-500 (2002) [V.V. Sokolov, A.V. Tsiganov, Commutative Poisson subalgebras for Sklyanin brackets and deformations of some known integrable models, Theor. Math. Phys., 133(3), 1730-1743 (2002)]; nlin/0112011.
    60. I.Z. Golubchik, V.V. Sokolov, Soglasovannye skobki Li i integriruemye uravneniya tipa modeli glavnogo kiral’nogo polya, Funkts. analiz i ego pril., 36(3), 9-19 (2002) [I.Z. Golubchik, V.V. Sokolov, Compatible Lie brackets and integrable equations of the principal chiral model type, Funct. Anal. Appl., 36(3), 172-181 (2002)].
    61. V.V. Sokolov, Generalized Kowalewski Top: new integrable cases on e(3) and so(4), CRM Proceedings and Lecture Notes, 32, 307-313 (2002) [The Kowalevski Property. Edited by: Vadim B. Kuznetsov, ISBN 978-0-8218-2885-4]; nlin/0110022.
    62. V.V. Sokolov, T. Wolf, Classification of integrable polynomial vector evolution equations, J. Phys. A 34(49), 11139-11148 (2001); nlin/0611038.
    63. A.V. Borisov, I.S. Mamaev, V.V. Sokolov, Novyi integriruemyi sluchai na so(4), Dokl. Akad. nauk, 381(5), 614–615 (2001) [A.V. Borisov, I.S. Mamaev, V.V. Sokolov, A new integrable case on so(4), Dokl. Phys., 46(12), 888-889 (2001)].
    64. V.V. Sokolov, Novyi integriruemyi sluchai dlya uravnenii Kirkhgofa, TMF, 129(1), 31-37 (2001) [V.V. Sokolov, A new integrable case for the Kirchhoff equation, Theor. Math. Phys., 129(1), 1335-1340 (2001)].
    65. A.V. Zhiber, V.V. Sokolov, Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa, Uspekhi mat. nauk, 56:1(337), 63–106 (2001) [A.V. Zhiber, V.V. Sokolov, Exactly integrable hyperbolic equations of Liouville type, Russ. Math. Surv., 56(1), 61-101 (2001)].
    66. A.V. Mikhailov, V.V. Sokolov, Integrable ODEs on associative algebras, Commun. Math. Phys., 211 (1), 231-251 (2000); solv-int/9908004.
    67. I.Z. Golubchik, V.V. Sokolov, Generalized operator Yang-Baxter equations, integrable ODEs and nonassociative algebras, J. Nonlinear Math. Phys., 7 (2), 184-197 (2000); nlin/0003034.
    68. A.V. Mikhailov, V.V. Sokolov, Integriruemye obyknovennye differentsial’nye uravneniya na svobodnykh assotsiativnykh algebrakh, TMF, 122(1), 88-101 (2000) [A.V. Mikhailov, V.V. Sokolov, Integrable ordinary differential equations on free associative algebras, Theor. Math. Phys., 122(1), 72-83 (2000)].
    69. I.Z. Golubchik, V.V. Sokolov, Mnogokomponentnoe obobshchenie ierarkhii uravneniya Landau–Lifshitsa, TMF, 124(1), 62–71 (2000) [I.Z. Golubchik, V.V. Sokolov, Multicomponent generalization of the hierarchy of the Landau-Lifshitz equation, Theor. Math. Phys., 124(1), 909-917 (2000)].
    70. I.Z. Golubchik, V.V. Sokolov, Eshche odna raznovidnost’ klassicheskogo uravneniya Yanga–Bakstera, Funkts. analiz i ego pril., 34(4), 75–78 (2000) [I.Z. Golubchik, V.V. Sokolov, One more kind of the classical Yang-Baxter equation, Funct. Anal. Appl., 34(4), 296-298 (2000)].
    71. V.V. Sokolov, T. Wolf, A symmetry test for quasilinear coupled systems, Inverse Problems, 15(2), L5-L11 (1999); nlin/0611037.
    72. M. Gürses, A. Karasu, V.V. Sokolov, On construction of recursion operators from Lax representation, J. Math. Phys., 40(12), 6473-6490 (1999); solv-int/9909003.
    73. A.V. Zhiber, V.V. Sokolov, Novyi primer giperbolicheskogo nelineinogo uravneniya, obladayushchego integralami, TMF, 120(1), 20–26 (1999) [A.V. Zhiber, V.V. Sokolov, New example of a nonlinear hyperbolic equation possessing integrals, Theor. Math. Phys., 120(1), 834-839 (1999)].
    74. I.Z. Golubchik, V.V. Sokolov, Obobshchennye uravneniya Gaizenberga na ℤ-graduirovannykh algebrakh Li, TMF, 120(2), 248–255 (1999) [I.Z. Golubchik, V.V. Sokolov, Generalized Heisenberg equations on ℤ-graded Lie algebras, Theor. Math. Phys., 120(2), 1019-1025 (1999)].
    75. P.J. Olver, V.V. Sokolov, Integrable evolution equations on associative algebras, Commun. Math. Phys., 193 (2), 245-268 (1998).
    76. P.J. Olver, V.V. Sokolov, Non-abelian integrable systems of the derivative nonlinear Schrödinger type, Inverse Problems, 14(6), L5-L8 (1998).
    77. S.P. Balandin, V.V. Sokolov, On the Painlevé test for non-Abelian equations, Phys. Lett. A 246 (3-4), 267-272 (1998).
    78. I.Z. Golubchik, V.V. Sokolov, O nekotorykh obobshcheniyakh metoda faktorizatsii, TMF, 110(3), 339–350 (1997) [I.Z. Golubchik, V.V. Sokolov, On some generalizations of the factorization method, Theor. Math. Phys., 110(3), 267–276 (1997)].
    79. I.Z. Golubchik, V.V. Sokolov, Integriruemye uravneniya na ℤ-graduirovannykh algebrakh Li, TMF, 112(3), 375–383 (1997) [I.Z. Golubchik, V.V. Sokolov, Integrable equations on ℤ-graded Lie algebras, Theor. Math. Phys., 112(3), 1097–1103 (1997)].
    80. S.I. Svinolupov, V.V. Sokolov, Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya, TMF, 108(3), 388–392 (1996) [S.I. Svinolupov, V.V. Sokolov, Deformations of triple-Jordan systems and integrable equations, Theor. Math. Phys., 108(3), 1160–1163 (1996)].
    81. I.Z. Golubchik, V.V. Sokolov, Ob integriruemykh sistemakh, porozhdennykh postoyannym resheniem uravneniya Yanga–Bakstera, Funkts. analiz i ego pril., 30(4), 68–71 (1996) [I.Z. Golubchik, V.V. Sokolov, Integrable systems generated by a constant solution of the Yang-Baxter equation, Funct. Anal. Appl., 30(4), 275–277 (1996)].
    82. I.T. Habibullin, V.V. Sokolov, R.I. Yamilov, Multi-component integrable systems and nonassociative structures, In: Nonlinear Physics: theory and experiment. Nature, structure and properties of nonlinear phenomena. Proc. workshop, Lecce, Italy, June 29-July 7, 1995. Alfinito, E. (ed.) et al., Singapore:, World Scientific Publishing, 1996, 139-168.
    83. V.V. Sokolov, S.I. Svinolupov, Deformations of nonassociative algebras and integrable differential equations, Acta Appl. Math., 41 (1-3), 323-339 (1995).
    84. V.V. Sokolov, S.I. Svinolupov, On nonclassical invertible transformations of hyperbolic equations, Eur. J. Appl. Math., 6(2), 145-156 (1995).
    85. V.V. Sokolov, A.V. Zhiber, On the Darboux integrable hyperbolic equations, Phys. Lett. A 208 (4-6), 303-308 (1995).
    86. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Classification of third order integrable evolution equations, Physica D 87 (1-4), 32-36 (1995).
    87. A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, O nelineinykh giperbolicheskikh uravneniyakh, integriruemykh po Darbu, Dokl. Akad. nauk, 343 (6), 746-748 (1995) [A.V. Zhiber, V.V. Sokolov, S.Ya. Startsev, Darboux integrable nonlinear hyperbolic equations, Dokl. Math., 52 (1), 128-130 (1995)].
    88. V. Drinfel’d, V. Sokolov, Lie algebras and equation of Korteweg-de Vries type, Adv. Ser. Math. Phys., 22, 25-88 (1995) [W-Symmetry. Ed. by P. Bouwknegt & K. Schoutens. World Sci. Publ., River Edge, NJ. ISBN: 978-981-02-1762-4].
    89. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Why are there so many integrable evolution equations of third order?, In: Nonlinear evolution equations and dynamical systems. NEEDS '94. Proc. 10th Int. Workshop, Los Alamos, NM, USA, September 11-18, 1994. Ed. by V.G. Makhanov et al., Singapore: World Scientific. 42-53 (1995). ISBN 981-02-2219-X.
    90. R.H. Heredero, V.V. Sokolov, S.I. Svinolupov, Toward the classification of third-order integrable evolution equations, J. Phys. A 27(13), 4557-4568 (1994).
    91. S.I. Svinolupov, V.V. Sokolov, Vektorno-matrichnye obobshcheniya klassicheskikh integriruemykh uravnenii, TMF, 100(2), 214–218 (1994) [S.I. Svinolupov, V.V. Sokolov, Vector-matrix generalizations of classical integrable equations, Theor. Math. Phys., 100(2), 959–962 (1994)].
    92. S.I. Svinolupov, V.V. Sokolov, Obobshchenie teoremy Li i iordanovy volchki, Matem. zametki, 53(2), 122–125 (1993) [S.I. Svinolupov, V.V. Sokolov, A generalization of a theorem of Lie, and Jordan tops, Math. Notes, 53(2), 201–203 (1993)].
    93. I.Z. Golubchik, V.V. Sokolov, S.I. Svinolupov, A new class of nonassociative algebras and a generalized factorization method, Erwin Schrödinger International Institute for Mathematics and Physics, Preprint ESI 53 (1993), 11 pages.
    94. A.V. Bocharov, V.V. Sokolov, S.I. Svinolupov, On Some Equivalence Problems for Differential Equations, Erwin Schrödinger International Institute for Mathematics and Physics, Preprint ESI 54 (1993), 12 pages.
    95. V.V. Sokolov, S.I. Svinolupov, T. Wolf, On linearizable evolution equations of second order, Phys. Lett. A 163 (5-6), 415-418 (1992).
    96. S.I. Svinolupov, V.V. Sokolov, Faktorizatsiya evolyutsionnykh uravnenii, Uspekhi mat. nauk, 47:3(285), 115–146 (1992) [S.I. Svinolupov, V.V. Sokolov, Factorization of evolution equations, Russ. Math. Surv., 47(3), 127-162 (1992)].
    97. S.I. Svinolupov, V.V. Sokolov, O predstavleniyakh kontrgradientnykh algebr Li v kontaktnykh vektornykh polyakh, Funkts. analiz i ego pril., 25(2), 76–78 (1991) [S.I. Svinolupov, V.V. Sokolov, Representations of contragradient Lie algebras in contact vector fields, Funct. Anal. Appl., 25(2), 146–147 (1991)].
    98. A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, The symmetry approach to classification of integrable equations, In: What is integrability?, Springer Ser. Nonlinear Dyn., 115-184 (1991) [Ed. by V.E. Zakharov, Berlin etc., Springer-Verlag, 1991. xiv, 321 pp. ISBN 3-540-51964-5].
    99. S.I. Svinolupov, V.V. Sokolov, Slabye nelokal’nosti v evolyutsionnykh uravneniyakh, Matem. zametki, 48(6), 91–97 (1990) [S.I. Svinolupov, V.V. Sokolov, Weak nonlocalities in evolution equations, Math. Notes, 48(6), 1234-1239 (1990)].
    100. A.V. Mikhailov, A.B. Shabat, V.V. Sokolov, Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii, V kn: “Integriruemost’ i kineticheskie uravneniya dlya solitonov”, Kiev: Naukova dumka, 1990, s.213-279.
    101. V.V. Sokolov, S.I. Svinolupov, T. Wolf, On the generation of nonlinear integrable evolution equations from linear second order equations, Rechnergestutzte Problemlosung/Computeranalytik (Weibig, 1988), 152 - 163, Studientexte, Bd.105, Tech. Univ. Dresden, 1989.
    102. V.V. Sokolov, O simmetriyakh evolyutsionnykh uravnenii, Uspekhi mat. nauk, 43:5(263), 133–163 (1988) [V.V. Sokolov, On the symmetries of evolution equations, Russ. Math. Surv., 43(5), 165-204 (1988)].
    103. V.V. Sokolov, Psevdosimmetrii i differentsial’nye podstanovki, Funkts. analiz i ego pril., 22(2), 47–56 (1988) [V.V. Sokolov, Pseudosymmetries and differential substitutions, Funct. Anal. Appl., 22(2), 121-129 (1988)].
    104. V.V. Sokolov, O strukture algebry simmetrii dlya odnopolevogo evolyutsionnogo uravneniya, Dokl. Akad. nauk SSSR, 294 (5), 1065-1069 (1987) [V.V. Sokolov, On the structure of the algebra of symmetries for a one-field evolution equation, Sov. Math., Dokl. 35 (3), 635-638 (1987)].
    105. F.Kh. Mukminov, V.V. Sokolov, Integriruemye evolyutsionnye uravneniya so svyazyami, Matem. sb., 133(175), № 3(7), 392–414 (1987) [F.Kh. Mukminov, V.V. Sokolov, Integrable evolution equations with constraints, Math. USSR Sb., 61(2), 389-410 (1988)].
    106. V.V. Sokolov, Finite-dimensional subalgebras in K3 and evolution equations, Reports of Stocholm University, 1986, 74-89.
    107. V.G. Drinfel’d, V.V. Sokolov, Ob uravneniyakh, rodstvennykh uravneniyu Kortevega-de Friza, Dokl. Akad. nauk SSSR, 284 (1), 29-33 (1985) [V.G. Drinfel'd, V.V. Sokolov, On equations related to the Korteweg-de Vries equation, Sov. Math., Dokl. 32, 361-365 (1985)].
    108. V.G. Drinfel’d, S.I. Svinolupov, V.V. Sokolov, Klassifikatsiya evolyutsionnykh uravnenii pyatogo poryadka, obladayushchikh beskonechnoi seriei zakonov sokhraneniya, Dokl. AN USSR, ser. A, №10, 7-10 (1985).
    109. V.V. Sokolov, O gamil’tonovosti uravneniya Krichevera - Novikova, Dokl. Akad. nauk SSSR, 277 (1), 48-50 (1984) [V.V. Sokolov, On the Hamiltonian property of the Krichever-Novikov equation, Sov. Math., Dokl. 30, 44-46 (1984)].
    110. V.V. Sokolov, A.B. Shabat, Classification of integrable evolution equations, Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 4, 221-280 (1984) [Edited by S. P. Novikov. Harwood Academic Publishers, Chur, 1984. ix+280 pp. ISBN: 3-7186-0146-X 58-06].
    111. V.G. Drinfel’d, V.V. Sokolov, Algebry Li i uravneniya tipa Kortevega–de Friza, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., t. 24, 81–180 (1984) ) [V.G. Drinfel'd and V.V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math., 30(2), 1975-2036 (1984)].
    112. S.I. Svinolupov, V.V. Sokolov, R.I. Yamilov, O preobrazovaniyakh Bek-lunda dlya integriruemykh evolyutsionnykh uravnenii, Dokl. Akad. nauk SSSR, 271 (4), 802-805 (1983) [S.I. Svinolupov, V.V. Sokolov, R.I. Yamilov, On Bäcklund transformations for integrable evolution equations, Sov. Math., Dokl. 28, 165-168 (1983)].
    113. V.G. Drinfel’d, V.V. Sokolov, Simmetrii v uravneniyakh Laksa, V sb: Integriruemye sistemy, pod red. A.B. Shabata, Ufa, s. 3-22 (1982).
    114. S.I. Svinolupov, V.V. Sokolov, O zakonakh sokhraneniya dlya uravnenii s netrivial’noi algebroi Li-Beklunda, V sb: Integriruemye sistemy, pod red. A.B. Shabata, Ufa, s.53-67 (1982).
    115. S.I. Svinolupov, V.V. Sokolov, Ob evolyutsionnykh uravneniyakh s netrivial’nymi zakonami sokhraneniya, Funkts. analiz i ego pril., 16(4), 86-87 (1982) [S.I. Svinolupov, V.V. Sokolov, Evolution equations with nontrivial conservative laws, Funct. Anal. Appl., 16(4), 317-319 (1983)].
    116. V.G. Drinfel’d, V.V. Sokolov, Uravneniya tipa Kortevega-de Friza i prostye algebry Li, Dokl. Akad. nauk SSSR, 258 (1), 11-16 (1981) [V.G. Drinfel'd, V.V. Sokolov, Equations of Korteweg-de Vries type and simple Lie algebras, Sov. Math., Dokl. 23, 457-462 (1981)].
    117. B.A. Magadaev, V.V. Sokolov, O polnoi algebre Li-Beklunda uravneniya Kortevega-de Friza, Mekhanika neodnorodnykh sploshnykh sred, Dinamika sploshnoi sredy, 52, 48-55 (1981).
    118. V.G. Drinfel’d, V.V. Sokolov, Novye evolyutsionnye uravneniya, obladayushchie (L,A) - paroi, Trudy seminara S.L. Soboleva, Inst. matem. Novosibirsk, 2, 5-9 (1981).
    119. V.V. Sokolov, A.B. Shabat, L,A-pary i zamena tipa Rikatti, Funkts. analiz i ego pril., 14(2), 79-80 (1980) [V.V. Sokolov, A.B. Shabat, (L,A)-Pairs and a Ricatti type substitution, Funct. Anal. Appl., 14(2), 148-150 (1980)].
    120. V.V. Sokolov, Primery kommutativnykh kolets differentsial’nykh operatorov, Funkts. analiz i ego pril., 12(1), 82–83 (1978) [V.V. Sokolov, Examples of commutative rings of differential operators, Funct. Anal. Appl., 12(1), 65-66 (1978)].
    121. V.V. Sokolov, O biratsional’no izomorfnykh kommutativnykh kol’tsakh differentsial’nykh operatorov, Funkts. analiz i ego pril., 12(3), 88–89 (1978) [V.V. Sokolov, Birationally isomorphic commutative rings of differential operators, Funct. Anal. Appl., 12(3), 234-236 (1978)].