Russian Academy of Sciences

Landau Institute for Theoretical Physics

Vladimir S. Novikov

Ph. D.

Publications

    1. A.V. Mikhailov, V.S. Novikov, J.P. Wang, Symbolic representation and Classification of Integrable systems, In: Algebraic Theory of Differential Equations, p.156-216 (2009). Editors: M.A.H. MacCallum and A.V. Mikhailov, Cambridge University Press, 2009, 248 pp. ISBN-13: 9780521720083 [London Mathematical Society Lecture Note Series, No. 357]; arXiv:0712.1972.
    2. A.V. Mikhailov, V.S. Novikov, J.P. Wang, On Classification of Integrable Nonevolutionary Equations, Studies in Applied Mathematics, 118 (4), 419-457 (2007); nlin/0601046.
    3. A.V. Mikhailov, V.S. Novikov, J.P. Wang, Partially integrable nonlinear equations with one higher symmetry, J. Phys. A 38(20), L337-L341 (2005); nlin/0601047.
    4. A.V. Mikhailov, V.S. Novikov, Classification of Integrable Benjamin—Ono-Type Equations, Moscow Math. J., 3(4), 1293-1305 (2003).
    5. A.V. Mikhailov, V.S. Novikov, Perturbative symmetry approach, J. Phys. A 35(22), 4775-4790 (2002); nlin/0203055.
    6. V.S. Novikov, Bezotrazhatel’nye potentsialy akusticheskoi spektral’noi zadachi, Pis’ma v ZhETF, 72 (3), 323-328 (2000) [V.S. Novikov, Reflectionless potentials for the acoustic spectral problem, JETP Lett., 72 (3), 153-156 (2000)].
    7. M.Yu. Kulikov, V.S. Novikov, Ob odnoi reduktsii odevayushchei tsepochki operatora Shredingera, TMF, 123(3), 424–432 (2000) [M.Y. Kulikov, V.S. Novikov, Reduction of the dressing chain of the Schrodinger operator, Theor. Math. Phys., 123(3), 768-775 (2000)].
    8. V.S. Novikov, Uravneniya, invariantnye otnositel’no differentsial’nykh podstanovok, TMF, 116(2), 193–200 (1998) [V.S. Novikov, Equations invariant under differential substitutions, Theor. Math. Phys., 116(2), 890-895 (1998)].