Russian Academy of Sciences

Landau Institute for Theoretical Physics

Publications of modern mathematics problems department

2018

  1. S. Abenda, P.G. Grinevich, Rational degeneration of M-curves, totally positive Grassmannians and KP2-solitons, Commun. Math. Phys., in press. First Online: 26 March 2018; arXiv:1506.00563.
  2. P.G. Grinevich, P.M. Santini, The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes, Physics Letters A 382(14), 973-979 (2018); arXiv:1708.04535.
  3. 2017

    1. S.V. Savchenko, On the number of 7-cycles in regular n-tournaments, Discrete Mathematics, 340(2), 264-285 (2017).
    2. P.G. Grinevich, R.G. Novikov, Mnogotochechnye rasseivateli so svyazannymi sostoyaniyami pri nulevoi energii, TMF, 193(2), 309-314 (2017) [P.G. Grinevich, R.G. Novikov, Multipoint scatterers with bound states at zero energy, Theor. Math. Phys., 193(2), 1675-1679 (2017)]; arXiv:1610.02319.
    3. P.G. Grinevich, S.P. Novikov, Singulyarnye solitony i spektral’naya meromorfnost’, Uspekhi mat. nauk, 72(6), 113-138 (2017) [P.G. Grinevich, S.P. Novikov, Singular solitons and spectral meromorphy, Russ. Math. Surv., 72(6), 1083-1107 (2017)].
    4. P.G. Grinevich, P.M. Santini, The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1, arXiv:1707.05659.
    5. P.G. Grinevich, P.M. Santini, Numerical instability of the Akhmediev breather and a finite-gap model of it, prinyata k publikatsii v Springer Proceedings in Mathematics & Statistics; arXiv:1708.00762.
    6. 2016

      1. P.G. Grinevich, R.G. Novikov, Moutard transform approach to generalized analytic functions with contour poles, Bull. Sci. Math., 140(6), 638-656 (2016); arXiv:1512.08874.
      2. P.G. Grinevich, R.G. Novikov, Moutard transform for the generalized analytic functions, J. Geom. Anal., 26(4), 2984-2995 (2016); arXiv:1510.08764.
      3. S.V. Savchenko, On 5-Cycles and 6-Cycles in Regular n-Tournaments, J. Graph Theory, 83(1), 44-77 (2016).
      4. A.Ya. Maltsev, On the canonical forms of the multi-dimensional averaged Poisson brackets, J. Math. Phys. 57, 053501 (2016); arXiv:1502.04468.
      5. P.G. Grinevich, P.M. Santini, Nonlocality and the inverse scattering transform for the Pavlov equation, Stud. Appl. Math., 137(1), 10-27 (2016); arXiv:1507.08205.
      6. A.M. Dyugaev, E.V. Lebedeva, Pravila sootvetstviya v atomnoi fizike, Pis’ma v ZhETF, 103 (1), 62-66 (2016) [A.M. Dyugaev, E.V. Lebedeva, Rules of correspondence in atomic physics, JETP Letters, 103(1), 57-61 (2016)].
      7. M. Avdeeva, F. Cellarosi, Ya.G. Sinai, Ergodic and statistical properties of B-free numbers, Teoriya veroyatn. i ee primen., 61(4), 805-829 (2016) [Theory Probab. Appl., 61(4), 569–589 (2017)].
      8. P.G. Grinevich, P.M. Santini, Odna lemma iz integral’noi geometrii i eyo prilozheniya: nelokal’nost’ v uravnenii Pavlova i tomograficheskaya zadacha s neprozrachnym parabolicheskim ob’ektom, TMF, 189(1), 59-68 (2016) [P.G. Grinevich, P.M. Santini, An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects, Theor. Math. Phys., 189(1), 1450-1458 (2016)]; arXiv:1511.04436.
      9. P.G. Grinevich, S.P. Novikov, Ob s-meromorfnykh obyknovennykh differentsial’nykh operatorakh, UMN, 71:6(432), 161-162 (2016) [P.G. Grinevich, S.P. Novikov, On s-meromorphic ordinary differential operators, Russ. Math. Surv., 71(6), 1143-1145 (2016)]; arXiv:1510.06770.
      10. P.G. Grinevich, R.G. Novikov, Obobshchennye analiticheskie funktsii, preobrazovaniya tipa Mutara i golomorfnye otobrazheniya, Funkts. analiz i ego pril., 50(2), 81-84 (2016) [P.G. Grinevich, R.G. Novikov, Generalized analytic functions, Moutard-type transforms and holomorphic maps, Funct. Anal. Appl., 50(2), 150-152 (2016)]; arXiv:1512.00343.
      11. V.E. Adler, Yu.Yu. Berest, V.M. Bukhshtaber, P.G. Grinevich, B.A. Dubrovin, I.M. Krichever, S.P. Novikov, A.N. Sergeev, M.V. Feigin, D. Fel’der, E.V. Ferapontov, O.A. Chalykh, P.I. Etingof, Aleksandr Petrovich Veselov (k 60-letiyu so dnya rozhdeniya), UMN, 71:6(432), 172-188 (2016) [Alexander Petrovich Veselov (on his 60th birthday), Russ. Math. Surv., 71(6), 1159-1176 (2016)].
      12. 2015

        1. A.Ya. Maltsev, On the minimal set of conservation laws and the Hamiltonian structure of the Whitham equations, J. Math. Phys. 56, 023510 (2015); arXiv:1403.3935.
        2. P.G. Grinevich, P.M. Santini, D. Wu, The Cauchy problem for the Pavlov equation, Nonlinearity, 28(11), 3709-3754 (2015); arXiv:1310.5834.
        3. P.G. Grinevich, A.E. Mironov, S.P. Novikov, O nerelyativistskom dvumernom chisto magnitnom supersimmetrichnom operatore Pauli, Uspekhi matem. nauk, 70:2(422), 109-140 (2015) [P.G. Grinevich, A.E. Mironov, S.P. Novikov, On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator, Russ. Math. Surveys, 70(2), 299–329 (2015)]; arXiv:1101.5678.
        4. I.M. Krichever, Kommutiruyushchie raznostnye operatory i kombinatornoe preobrazovanie Geila, Funkts. analiz i ego pril., 49(3), 22–40 ( 2015) [I.M. Krichever, Commuting difference operators and the combinatorial Gale transform, Funct. Anal. Appl., 49(3), 175-188 (2015)]; arXiv:1403.4629.
        5. S. Grushevsky, I. Krichever, Real-Normalized Differentials and the Elliptic Calogero-Moser System, In: J.E. Fornass et al. (eds.), Complex Geometry and Dynamics (Abel Symposia, Vol. 10), p. 123-137. Springer, 2015. ISBN 978-3-319-20337-9.
        6. 2014

          1. D. Li, Ya.G. Sinai, An application of the renormalization group method to stable limit laws, J. Stat. Phys., 157(4-5), 915-930 (2014).
          2. P.G. Grinevich, S.P. Novikov, Spektral’no meromorfnye operatory i nelineinye sistemy, Uspekhi mat. nauk, 69:5(419), 163–164 (2014) [P.G. Grinevich, S. Novikov, Spectral Meromorphic Operators and Nonlinear Systems, Russ. Math. Surv., 69(5), 924-926 (2014)]; arXiv:1409.6349.
          3. V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever (Eds.), Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014, AMS, 2014, xii,393 pp. ISBN 978-1-4704-1871-7 [American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, Vol. 234 (2014)].
          4. I. Krichever, Amoebas, Ronkin function, and Monge–Ampère measures of algebraic curves with marked points, American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, 234, 265-278 (2014) [Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014. Ed. by V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever. AMS, 2014, xii,393pp. ISBN 978-1-4704-1871-7]; arXiv:1310.8472.
          5. A.Ya. Maltsev, The averaging of multi-dimensional Poisson brackets for systems having pseudo-phases, American Mathematical Society Translations - Series 2, Advances in the Mathematical Sciences, 234, 279-307 (2014) [Topology, Geometry, Integral Systems, and Mathematical Physics. Novikov’s Seminar 2012-2014. Ed. by V.M. Buchstaber, B.A. Dubrovin, I.M. Krichever. AMS, 2014, xii,393pp. ISBN 978-1-4704-1871-7]; arXiv:1402.3686.
          6. P.G. Grinevich, Elementy teorii rimanovykh poverkhnosttei i teorema Rimana-Rokha, V sbornike: Geometricheskie metody matematicheskoi fiziki 2. Lektsii letnei shkoly. Voskresenskoe 25-29.06.2012- M.:MAKS Press 2014, s. 29-60.